Follow this link to skip to the main content National Aeronautics and Space Administration Logo
NASA Banner
NASA Mars Exploration Program
Mars Exploration Program


Comets: Siding Spring (C/2013 A1)

Comet Siding Spring: October 19, 2014
NASA's NEOWISE mission detected comet C/2013 A1 Siding Spring on July 28, 2014, less than three months before this comet's close flyby of Mars on Oct. 19.
Click to view: Near Miss! Comet Siding Spring

Comet Siding Spring Facts



This comet sneaked up on us because it was coming in from underneath the plane of Earth's orbit!

Luckily, asteroid and comet hunter Robert H. McNaught spotted it with the constellation Lepus in the star background.

At the time of its discovery, Comet Siding Spring
was farther from the Sun than Jupiter -
about 7.2 times farther away from the Sun than Earth.

McNaught achieved this triumph on January 3, 2013, using the .05-meter (20-inch) Uppsala Schmidt Telescope, at Siding Spring Observatory in New South Wales, Australia.

Anatomy of Comet Siding Spring (C/2013 A1)

Dust Tail

Comet Siding Spring's dust tail will completely engulf the entire planet when Mars travels through it. Hubble images show Comet Siding Spring has passed the snow and water lines, the points at which the Sun's warmth activates or releases gases and water ice to form the coma and tail.

Gas and dust in the comet's nucleus and coma often separate into two parts of the comet's tail. A comet's dust tail is the trail of dust and gas illuminated by the Sun. It is blown away from the comet's coma by the solar wind, and follows the curve of the comet's orbit.

When comets are traveling through the outer solar system, they are frozen and do not have tails. Far away and extremely small, they are almost impossible to detect. As they approach the Sun in the inner solar system, radiation from the Sun turns some comet materials like water ice into a gas. As gases leave the nucleus, they carry comet dust with them.

When sunlight illuminates the coma and tail as the comet approaches the Sun, astronomers have a better chance of detecting it.


Though early estimates suggested the size of comet Siding Spring's nucleus could be anywhere from 0.62 to 31 miles (1 to 50 kilometers) across, new data from NASA's Swift Satellite indicates that the icy nucleus of comet Siding Spring is only about 2,300 feet (700 meters) across. Hubble images of Comet Siding Spring show two jets coming from the icy nucleus in opposite directions. Measuring them can help us understand how the comet is rotating and what it might look like when it flies by Mars.

The nucleus is the solid, frozen core of a comet. It is made of rock, dust, water ice, and frozen gases (e.g., carbon dioxide, carbon monoxide, methane, and ammonia).

The nucleus of a comet is usually small in size, usually about a few miles across.

The surface of a comet's nucleus is often dry, dusty, rocky, and dark. Dark materials may contain organic compounds, the chemical building blocks of life. When a comet absorbs heat from the Sun, the nucleus releases water ice and frozen gases.

Sometimes, dazzling jets of gas can erupt from inside the nucleus when the Sun heats some parts of its surface more than others. That can cause the nucleus to spin or even break up into smaller pieces. Such events can change a comet's trajectory and, ultimately, its fate.


Comet Siding Spring has crossed the snow and water lines, key points when it is close enough for the Sun's warmth to activate it. Now that scientists can see the coma, they estimate it is roughly 12,000 miles (19,000 kilometers) across.

A comet's coma is the atmosphere of gas and dust around the nucleus of the comet. It can be hundreds of thousands of kilometers wide.

The coma of a comet is made largely of water and dust. When a comet approaches the Sun, it warms up. Heat from the Sun changes the comet's icy materials to gases. The comet releases these gases, forming the coma.

Radiation from the Sun and the solar wind then push a lot of this material away from the nucleus, forming the comet's tail.

When a comet is about the same distance from the Sun as Mars (about 1.5 AU), its coma can shrink, even though it is producing more gas as it warms. That's because the solar wind becomes forceful enough to push more coma material into the tail, making the tail a lot bigger.

That can be a big deal for planets like Mars, which is crossing through the debris field of Comet Siding Spring's coma and tail.

Ion Tail

Scientists will study Comet Siding Spring's ion tail to assess any effect ion-tail particles might have on Mars and Mars missions.

Comets usually have two tails-a dust and an ion tail.

The ion tail is made of ionized gas. (You've heard of solid, liquid, and gas, but there's a fourth state: ionized gas, or plasma. Think of plasma screens, fluorescent and neon lights, and even the Northern Lights). Gas becomes ionized when electrons are charged enough to escape atoms or molecules. That always causes a glow of some kind.

Gas in a comet becomes ionized when ultraviolet radiation from the Sun interacts with the comet's gases. A comet's ion tail is usually blue in color due to the gas molecules that make it up. Ionized gas gets blown away from the coma by the solar wind. A comet's ion tail always points away from the Sun.


Latest News

read the article 'Orbiter Completes Maneuver to Prepare for Comet Flyby'
NASA's Mars Odyssey spacecraft has successfully adjusted the timing of its orbit around Mars as a defensive precaution for a comet's close flyby of Mars on Oct. 19, 2014.
read the article 'NASA's Mars Spacecraft Maneuvers to Prepare for Close Comet Flyby'
NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.
read the article 'NASA's Swift Satellite Tallies Water Production of Mars-bound Comet'
In late May, NASA's Swift satellite imaged comet Siding Spring, which will brush astonishingly close to Mars later this year.

Images & Infographics

  • Click to view: NEOWISE Spies Comet C/2013 A1 Siding Spring a Second Time
  • Hubble's Comet Siding Spring animation
  • Click to view: Swift Satellite Tallies Water Production on Mars-Bound Comet
  • Click to view: Comet: Siding Spring
  • Click to view: NEOWISE Spies Comet C/2013 A1 Siding Spring
  • Click to view: Comet Siding Spring C/2013 A1